On an edge ranking problem of trees and graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum Edge Ranking Spanning Tree Problem on Interval Graphs

The minimum edge ranking spanning tree problem on graph G is to find a spanning tree T of G such that the minimum edge ranking of T is minimum among all possible spanning trees of G. In this paper, we propose a linear-time algorithm for this problem on interval graphs.

متن کامل

An Efficient Algorithm for Edge-Ranking Trees

Abs t rac t . An edge-ranking of an undirected graph G is a labeling of the edges of G with integers such that all paths between two edges with the same label i contain an edge with label j > i. The problem of finding an edge-ranking of G using a minimum number of ranks has applications in scheduling the manufacture of complex multi-part products; it is equivalent to finding the minimum height ...

متن کامل

An On-Line Algorithm for Edge-Ranking of Trees

An edge-ranking of a graph G is a labeling of the edges of G with positive integers such that every path between two edges with the same label γ contains an edge with label λ > γ. In the on-line edge-ranking model the edges e1, e2 . . . , em arrive one at a time in any order, where m is the number of edges in the graph. Only the partial information in the induced subgraph G[{e1, e2, . . . , ei}...

متن کامل

Edge ranking of weighted trees

In this paper we consider the edge ranking problem of weighted trees. We prove that a special instance of this problem, namely edge ranking of multitrees is NP-hard already for multitrees with diameter at most 10. Note that the same problem but for trees is linearly solvable. We give an O(log n)-approximation polynomial time algorithm for edge ranking of weighted trees.

متن کامل

On (Semi-) Edge-primality of Graphs

Let $G= (V,E)$ be a $(p,q)$-graph. A bijection $f: Eto{1,2,3,ldots,q }$ is called an edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ where $f^+(u) = sum_{uwin E} f(uw)$. Moreover, a bijection $f: Eto{1,2,3,ldots,q }$ is called a semi-edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ or $f^+(u)=f^+(v)$. A graph that admits an  ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 1991

ISSN: 0166-218X

DOI: 10.1016/0166-218x(91)90012-l